
Automated trimming of scanned images

Caversham Project Occasional Technical Paper Code Number:020426CTP
Author: David Hood Date: 26th April 2002
Keywords: scanning, image manipulation, automation, batch, trim
E-mail: caversham@otago.ac.nz

The Technical papers series is intended to document specific technical solutions to problems
encountered within the project. It is being made available to the public in the event the techniques
outlined may be of use to others.

Synopsis: Scanning in historical material from second hand reproductions can often result in extra
material being captured in the image. This can confuse the OCR (optical character recognition)
process. The techniques outlined within this document use graphic manipulation software, textual
manipulation software, database software, and scripting control to automatically trim images to the
desired area for OCR. While the implementation of this solution is Macintosh based, the techniques
could be applied to any computer system.

Description of Problem:

Much of large scale scanning done by the project involves the scanning, and OCR of
public historical sources such as trades directories, telephone directories, and electoral
rolls. These are normally scans of photocopied reproductions of the original source, as
this is the only way we are able to get access to the material. In many cases the
material contains extraneous information such as sections of the facing page (see
figure 1).

Figure 1: Example page including section of facing page, compared to desired page.

As well as including extra information, the location of the original document on the
photocopied page may vary depending on where the original was in relation to the
copier.

The above problems have meant scanning is a very manual, labour intensive, process.
The techniques described below offer automatic solutions to these problems, requiring
less manual labour.

The overall solution is to use techniques to locate the original page on the scanned
photocopy and to trim the excess, unwanted, image prior to optical character
recognition. For the specific implementation below to succeed the following is
assumed:
- The photocopies of the original pages were made at the same size. As such,
the desired original page will occupy the same area on every photocopy, though it
may be in a different location.
- The photocopies were scanned taking the same area of the photocopied page at
a constant resolution. This ensures that the original images occupy the same area in
the scans.
- The images are scanned in black and white. This makes automatic
identification of the printed area unambiguous. If non-text images were being
analysed, this would not be a requirement.
- Metrics of the text width can be obtained for one image. As the originals are
all at the same size and the same scanned resolution, the setting for one source apply
to all others.

Implementation of the solution:

The material used in this example was scanned at 300 dpi black and white tiffs (with a
threshold of 128). The scanned in area took in slightly less than an A4 page, being
2488*3450 pixels.

Several measures then need to be taken of one of the pages, these provide settings for
preforming the page location calculations

Figure 2: Important metrics

A) The total width of the page. Page Width.
B) The Maximum width of the text on the original page. Text Width
C) The area in which a cut is desirable. Trim Width.

A
B C

As well as the three main metrics some assessment needs to be made of page slope –
how much allowance needs to be made for different angles of photocopying the
original page. Any trim lines should be broad enough to avoid trimming sloping text.

The material was then sorted into left and right facing pages, if the images are saved
using file names that are consecutive in the directory structure this is a trivial job on
the Macintosh using applescript.

Note: The example code provided in the boxed areas was used on a dual processor
Macintosh G4 450 Mhz with 384 M Ram running System 10.1.4 and Applescript
1.8.2 (b3). It works fine on the machine it was written on, it may need adaptation for
other systems. The code has been provided as batch jobs for each step in the process,
in order to make it easier to understand what is going on. The provided code has also
been written in a slightly less efficient more readable fashion.

The aim is to take the contents of the folder and place the files alternately into odd
and even paged folders. This is to sort out what side of the page to trim. For left pages
trim the right side. For right pages trim the left. For the purposes of this document the
explanation will be with reference to left facing pages, a similar process applies to the
right pages.

Sample code for sorting files:

set OddsTurn to true
-- assuming you start on page 1

tell application "Finder"
set theFolderIWant to choose folder
set ListofDocuments to every document file of theFolderIWant
set Oddfolder to make new folder at desktop with properties {name:"OddFolder"}
set EvenFolder to make new folder at desktop with properties {name:"EvenFolder"}

end tell

repeat with loopCount from 1 to number of items in ListofDocuments

if OddsTurn then
tell application "Finder"

set nextfile to item loopCount in ListofDocuments
move nextfile to Oddfolder

end tell
set OddsTurn to false

else
tell application "Finder"

set nextfile to item loopCount in ListofDocuments
move nextfile to EvenFolder

end tell
set OddsTurn to true

end if

end repeat

Having sorted the pictures, the next step is to save the images as ascii text, recording
the colour of each pixel as a text code. This resulting text file will then be sent onto a
database for analysis. Before doing this, however, consider if some trimming is

possible before the analysis. For images on either face of the page the requirements
for determining the region to cut are locating the sides of the original image. If the
image occupies a significant proportion of the page, it may be possible to only sample
a section across it.

The image from figure 1 occupies 2488 by 3450 pixels, which will require analysing
8583600 pixels of information. As the image occupies most of the page, it is always
present in the middle of the page. By sampling the middle 20 per cent of the page, the
computational time is dramatically reduced. The middle 20 per cent of the image in
figure 1 is an area of 2488 by 690 pixels, containing 1716720 individual pixels of
information. In the case of the machine this was trialed on, sampling reduced the time
from approximately 14 mintues an image to less than a minute an image. I would
recommend that any trim of the height of the image leave more than 400 pixels of
information, to make the numbers involved in calculation more significant. If
trimming to reduce the calculation overhead, pay particular attention to the margin for
sloping images, as any slop in the trimmed area will not be detected in the
calculations.

The program Graphic Converter (version 4.2.1) was used to accomplish the crop and
save as ascii text. Before the batch job was run an image was saved as ascii text and
under options in the save dialog the ‘write height and width to file’ was unticked. This
meant that only the pixel information was recorded in the file, if other information is
recorded, then the row and column location calculations in the database (see later)
need to be adjusted. Because Graphic Converter created two files for each image,
applescript was then used to separate the larger .txt file from the smaller .pal colour
information file.

Sample code for cropping to middle 20% and saving as text:
tell application "Finder"

activate
set pathName to choose folder
set picList to every file of folder pathName whose file type is "TIFF"
set loopEnd to count of items of picList
set cutFolder to make new folder at desktop with properties {name:"CutFolder"}

end tell

tell application "GraphicConverter"
activate
repeat with n from 1 to loopEnd

set currentFile to item n of picList
open currentFile as alias
set imageInQuestion to image dimension of window 1
set originalwidth to item 1 of imageInQuestion
set originalheight to item 2 of imageInQuestion
change margins of window 1 with {0, -(2 * originalheight / 5), 0, -(2 * originalheight

/ 5)}
-- properties are Left Top Right Bottom
save window 1 in (((cutFolder as text) & name of window 1) & ".txt") as ASCII
close window 1

end repeat
end tell

tell application "Finder"
set textFolder to make new folder at desktop with properties {name:"TextFolder"}

set bigFiles to every document file of cutFolder whose size > 100
repeat with loopCount from 1 to number of items in bigFiles

set largeFile to item loopCount in bigFiles
move largeFile to textFolder

end repeat
move cutFolder to trash
empty trash

end tell

Before analysing the records in a database, it is necessary to change the tab marks
between the pixel information in each line to a carriage return symbol. This will
enable each pixel to be saved as a separate record in the database. The carriage return
(\r) is the Macintosh end of line symbol. Other computer systems will require
different adjustments.

While there are many ways of changes tabs to end of lines, in this case the Macintosh
OS X command line was the easiest means. Because the images have been
transformed into very large text files, the unix tr tool offers an easy route to near
instantly replace tabs. If the full image in figure 1 was saved as text, it would need
8580150 tabs replaced, so an efficient tool is required.

Sample code for command line tab replacement

tell application "Finder"
activate
set NotTabbed to make new folder at desktop with properties {name:"NoTabs"}
set PosNoTab to POSIX path of (NotTabbed as alias)
set Startfolder to choose folder
set ListofTabbed to every document file of Startfolder

end tell

repeat with loopCount from 1 to number of items in ListofTabbed
set tabbedFile to item loopCount in ListofTabbed
set sameName to name of tabbedFile
set butcherME to POSIX path of (tabbedFile as alias)
set command to "tr '\\11' '\\015' <" & butcherME & " > " & PosNoTab & sameName
tell application "Terminal"

do shell script command
end tell

end repeat

With the tabs replaced, the text file can now be analysed using a database program.
The first stage of analysis is to determine the threshold values. The areas of the image
that actually contain text can be distinguished from other areas by the amount of black
in each column of the image. To have the computer recognise the text areas from the
solid black band at the edge of Figure 2, the white areas of the photocopy edges, and
the occasional specks of dirt on the white areas, the representative range of black in
the image needs to be established. This was done by using a database program
(Valentina 1.9.1 b2) to calculate the amount of black in each column and send that
information to excel for graphing.

Using the graph of a sample image (Figure 3) the range of values for text can be
easily assessed.

Figure 3: Sample Image and its accompanying graph of black pixels.

In The above example, the threshold for identifying text can be set from 3 to 450
pixels of black in a column. In order to assure that it is text that has been located,
rather than an isolated scratch, part of the searching algorithm is to scan along several
columns, confirming that there is a text range value of black in each, before declaring
that the text area has been located.

In the following code the imageWidth variable at the start is set to the total width of
the image (Page width from Figure 2). The field columnNumber created in the
database is a calculation field that determines the column position of the pixel from
the number of the database record, if a vertical analysis of the database was required
the row number could also be calculated.

BlackPix

0

100

200

300

400

500

600

700

800

BlackPix

Sample code for analysing image

set imageWidth to 2488

--
-- Create
tell application "Finder"

set putItThere to (make new folder at desktop with properties {name:"DBtempFolder"}) as
text
end tell
tell application "Valentina Carbon beta"

activate
set theDB to make new database with data file (putItThere & "picture")
tell theDB

set theBaseObject to make new base object with properties {name:"image"} at end
tell theBaseObject

make new field with properties {name:"pixel", type:tBool} at end
make new field with properties {name:"columnNumber", type:tUShort,

method:"RecID- ((CEILING(RecID/" & imageWidth & ")-1)*" & imageWidth, indexed:true} at end
end tell
set theFile to choose file with prompt "Text File"
set theCursor to SQL theDB Select "SELECT pixel FROM image"
import theCursor from ascii file theFile
delete theCursor

end tell
end tell
--
-- Analysis
tell application "Microsoft Excel"

set FormulaR1C1 of Range "R1C1" to "Column"
set FormulaR1C1 of Range "R1C2" to "BlackPix"

end tell

repeat with loopCount from 1 to imageWidth
tell application "Valentina Carbon beta"

set tempCursor to SQL theDB Select ("SELECT pixel From image WHERE pixel =
1 and columnNumber = " & loopCount)

get loopCount
set Recs to get count of records of tempCursor
delete tempCursor

end tell

tell application "Microsoft Excel"
set FormulaR1C1 of Range ("R" & (loopCount + 1) & "C1") to loopCount
set FormulaR1C1 of Range ("R" & (loopCount + 1) & "C2") to Recs

end tell
end repeat
tell application "Microsoft Excel"

Activate
Select CurrentRegion of Range "R1C1"
Create New Chart
Delete Series 1 of ActiveChart

end tell
--
----Clean Up
tell application "Valentina Carbon beta"

quit
end tell
tell application "Finder"

set disposeMe to putItThere as alias
move disposeMe to trash
empty trash

end tell

Now that the threshold values are known the folder of text files of picture information
can be analysed, at the results applied to automatically crop the images in the left or
right sorted folder. The script below sorts left facing pages, for right facing pages the
direction of search should be reversed.

While this technique was developed to solve a particular problem, the methodology
may be useful for other occasions, such as the analysis of images, or the comparison
of timed pictures.

Sample code for batch detection and trimming

--Settings

set lowendThreshold to 10 -- high enough to screen out specks
set highendThreshold to 600 -- a little above the maximum level of text
set safetyMargin to 18 --allowance for slope
set totalImageWidth to 2488 -- total width of the image
set textArea to 1390 -- width of the desired text area
set cutArea to 80 -- area in which cut can be made

--
-- Set Up
tell application "Finder"

activate
set outputFolder to (make new folder at desktop with properties {name:"FinalOutput"}) as

text
set textFolder to choose folder with prompt "Select folder with text versions"
set imageFolder to choose folder with prompt "Select folder with image versions"
set textList to every file of folder textFolder
set imageList to every file of folder imageFolder
set loopEnd to count of items of textList

end tell

--
repeat with i from 1 to loopEnd

tell application "Finder"
set tempDBFolder to (make new folder at desktop with properties

{ name:"TempDB"}) as text
end tell

tell application "Valentina Carbon beta"
activate
set theDB to make new database with data file (tempDBFolder & "picture")
tell theDB

set theBaseObject to make new base object with properties {name:"image"}
at end

tell theBaseObject
make new field with properties {name:"pixel", type:tBool} at end

make new field with properties {name:"columnNumber",
type:tUShort, method:"RecID- ((CEILING(RecID/" & totalImageWidth & ")-1)*" & totalImageWidth,
indexed:true} at end

end tell
set theFile to item i of textList as alias
set theCursor to SQL theDB Select "SELECT pixel FROM image"
import theCursor from ascii file theFile
delete theCursor

end tell
end tell
--
-- Analysis
set cutFromColumn to 0
set cutToColumn to 0
set verfiedTextareas to 0
set searchCutColumn to 0
set trimthreshold to 12
set checkThisColumn to 1

repeat until verfiedTextareas = 8

tell application "Valentina Carbon beta"
set tempCursor to SQL theDB Select ("SELECT pixel From image

WHERE pixel = 1 and columnnumber = " & checkThisColumn)
set Recs to get count of records of tempCursor
delete tempCursor

end tell
set checkThisColumn to checkThisColumn + 1
if ((Recs > lowendThreshold) and (Recs < highendThreshold)) then

set cutFromColumn to checkThisColumn
set verfiedTextareas to verfiedTextareas + 1

else
if (verfiedTextareas > 0) then

set verfiedTextareas to verfiedTextareas - 1
end if

end if
end repeat
set cutFromColumn to checkThisColumn - (safetyMargin + 9)

set checkThisColumn to cutFromColumn + textArea
repeat until cutToColumn > 0

repeat until checkThisColumn = (cutFromColumn + textArea + cutArea)
tell application "Valentina Carbon beta"

set tempCursor to SQL theDB Select ("SELECT pixel From image
WHERE pixel = 1 and columnnumber = " & checkThisColumn)

set Recs to get count of records of tempCursor
delete tempCursor

end tell
set checkThisColumn to checkThisColumn + 1
if Recs < trimthreshold then

set cutToColumn to checkThisColumn
set checkThisColumn to cutFromColumn + textArea + cutArea

end if
end repeat
set trimthreshold to trimthreshold + 12
if trimthreshold > highendThreshold then

set cutToColumn to totalImageWidth - safetyMargin
end if
set checkThisColumn to cutFromColumn + textArea

end repeat
set cutToColumn to cutToColumn + safetyMargin

tell application "Valentina Carbon beta"

quit
end tell
tell application "GraphicConverter"

set currentFile to item i of imageList
open currentFile as alias
set imageInQuestion to image dimension of window 1
set originalwidth to item 1 of imageInQuestion
set originalheight to item 2 of imageInQuestion
change margins of window 1 with {-cutFromColumn, 0, -(totalImageWidth -

cutToColumn), 0}
save window 1 in ((outputFolder as text) & name of window 1)
close window 1
quit

end tell
 --

----Clean Up

tell application "Finder"
set disposeMe to tempDBFolder as alias
move disposeMe to trash
empty trash

end tell

end repeat

Relevant addresses:
Graphic Converter: http://www.lemkesoft.de
Valentina: http://www.paradigmasoft.com

